Непосредственный впрыск, что это, 4D что такое

Как работает непосредственный впрыск и так ли он хорош

Дифирамбов прямому впрыску достаточно написано в рекламных материалах. А мы попробуем говорить относительно беспристрастно.

Что такое непосредственный впрыск

Это такое устройство топливной системы, при котором бензин впрыскивается форсункой прямо в цилиндр. Этим он отличается от впрыска «обыкновенного» — когда форсунка впрыскивает топливо во впускной коллектор.

Называть эту систему инновационной, пожалуй, уже поздновато — она была реализована на многих самолетах времен Великой Отечественной войны. Так, например, она была применена на истребителе Ла-5ФН.

А вот на автомобилях относительно массовой она стала уже в конце двадцатого-начале двадцать первого века, примерно с появлением электронного управления двигателем. Это в первую очередь была фирма Mitsubishi с системой, которую они назвали GDI. Потом за ними потянулись и другие японские марки — так, например, можно назвать Toyota с двигателем D-4. Потом все это как-то притихло, и вот начавшее падать знамя непосредственного впрыска подхватил концерн VAG, да так, что по этой узкой тропинке между экономией на топливе и экономией на стоимости компонентов двигателя ломанусь и многие другие автопроизводители.

Для чего все это затевалось

Как бы ни кипел и бушевал внутренний инженер внутри любого сотрудника автомобильной компании, разработка большинства тех систем, что мы видим в современных автомобилях, вызвана была отнюдь не желанием сделать самый высокотехнологичный продукт. Нет, как правило, толчком всех инноваций в системах, управляющих формированием смеси, служат экологические нормы. Широким росчерком пера регулирующие органы вводят новые нормы. После этого (а как правило, несколько раньше) автопроизводители внедряют новые системы, позволяющие этим нормам удовлетворять.

Нам сложно сейчас судить о том, какая мотивация была у фирмы Mitsubishi, но исходя из общих тенденций — как минимум, очень схожая.

Главной особенностью («киллер-фичей», если задействовать сленг из другой профессиональной области) технологии GDI позиционировалась возможность работы на сверхбедных смесях. Здесь сразу надо сделать отступление и рассмотреть обычный режим работы двигателя.

На такте впуска поршень в цилиндре идет вниз, открывается впускной клапан, а форсунка «брызгает» топливом. Порцию топлива вместе с воздухом засасывает в цилиндр создаваемым разрежением. Попутно из-за турбулентности и тому подобных эффектов топливо перемешивается с воздухом, и продолжает это делать на такте сжатия, когда впускной клапан закрыт, а цилиндр идет вверх. Таким образом, к моменту достижения верхней мертвой точки в цилиндре оказывается сжатая равномерная смесь. Причем количество топлива, впрыснутое форсункой, рассчитывается так, чтобы его соотношение к воздуху составляло 1:14,7 (или немного беднее/богаче в зависимости от требуемого режима работы двигателя) — такая смесь называется стехиометрической, и горит лучше всего.

А идея работы на сверхбедной смеси заключается в том, что топливо впрыскивается в цилиндр на такте сжатия, когда поршень уже почти достиг верхней мертвой точки. Благодаря специальной форме днища поршня, впрыснутая порция топлива завихряется таким образом, что по центру камеры сгорания (в районе свечи зажигания) образуется область со стехиометическим соотношением, а вокруг нее — сплошной чистый воздух. Суммарно соотношение топлива к воздуху в цилиндре составляет вплоть до 1:40, за что и получено название сверхбедной смеси. При этом режим этот применяется на малых нагрузках, когда горения этого малого заряда смеси достаточно для того, чтобы крутить двигатель.

Еще этот режим называется «послойным» (слой воздуха-слой нормальной смеси) или гетерогенным (т.к. состав смеси в цилиндре неоднородный). Вот так это выглядит на картинке:

При этом, разумеется, никто не запрещает и не мешает работать в штатном режиме — впрыскивая топливо на такте впуска (пусть и в цилиндр, а не во впуск). За время такта впуска и сжания воздух перемешается с топливом ничуть не хуже. Более того, этот режим даже необходим — в режимах средних и больших нагрузок.

Увы, засада ждала со стороны той же экологии. В режиме сверхбедной смеси в камере сгорания оказались идеальные условия для образования оксидов азота (NOx) — высокая температура и избыток воздуха. Для решения этой проблемы стали городить специальное дополнение к катализатору. В нем оксиды азота задерживались, а потом, при переходе в режим гомогенной смеси, получаемыми соединениями CH восстанавливались до безобидных соединений. Поэтому мотор с послойным смесеобразованием на холостом ходу будет периодически переходить на режим обычного смесеобразования, а потом возвращаться обратно.

Все эти механизмы решения проблемы в итоге тратили слишком много ресурсов при сомнительном результате — существенной экономии топлива послойное смесеобразование так и не дало. Настолько, что и VAG в конечном итоге отказался от режима послойного смесеобразования — хотя в его линейке и остались двигатели со словами FSI — но самого режима » Fuel Stratified Injection» (так это расшифровывается) в нем не осталось. Преемником стали системы TSI, которые хоть этого режима и не имеют, но по-прежнему впрыскивают топливо непосредственно в цилиндр.

Читайте также:  Замена помпы на фольксваген поло

А зачем тогда непосредственный впрыск?

Хотя затея со сверхбедной смесью и провалилась, непосредственный впрыск остался. Это не случайно. Возможность впрыскивать топливо в произвольном количестве и в произвольный момент позволяет гораздо более гибко управлять составом смеси, добиваясь более высоких показателей как в части экологичности, так и в части мощности. Конечно, никакой революции эта технология не принесла, но управлять точнее стало можно.

Надо заметить, впрочем, что дальнейшая практика показала, что в некоторых режимах непосредственный впрыск приводит к повышенному количеству токсичных выбросов. Поэтому у того же концерна VAG есть системы, содержащие в себе два набора форсунок — низкого давления для впрыска в коллектор, и высокого давления — для впрыска в цилиндр.

Конструктивные отличия системы с непосредственным впрыском

Существенных отличий, если говорить о топливной системе, а не о программе в блоке управления, не так уж и много. В сущности, это просто наличие ТНВД в топливном контуре:

Помимо насоса, в системе еще присутствует датчик давления и клапан-регулятор давления топлива, управляемый электронно. Это необходимо, так как блок управления может менять давление топлива в магистрали высокого давления в зависимости от режима.

Так это ж почти дизель? Зачем тогда вот это все?

Да, по схеме топливной системы это почти дизель. Но разница в принципе воспламенения, величинах давления и других параметрах довольно велика. Поэтому все же, несмотря на все «навороты», это классический бензиновый двигатель со всеми присущими ему особенностями. А об устройстве дизеля мы поговорим в следующем выпуске.

Источник: service-193.livejournal.com

Двигатель непосредственного впрыска D-4 — Энциклопедия японских машин

В литературе не представлялось возможным найти какое-либо описание по двигателям непосредственного впрыска, за исключением информации, распложенной по адресу www.alflash.narod.ru. Там представлено только общие слова, поэтому, при ремонте такого типа двигателей возникают определенные сложности. В большей мере, эти сложности связаны с малым объемом наших знаний о конструкции этих двигателей. Можно даже сказать, что с полным отсутствием этой информации.

Поработав с этим двигателем, у меня появилось некоторое представление о конструкции автомобиля «Corona Premio» с двигателем 3S, имеющий аббревиатуру –D-4. Я попробую описать то, что удалось узнать. Но в этом описании не хотелось бы претендовать на полное знание и полную достоверность информации. Это всего лишь предположения и ощущения. Что же представляет из себя двигатель 3S-FSE? Двигатель 3S-FSE(D-4) – является двигателем непосредственного впрыска, в котором для реализации режимов работы с обеднением смеси, получения минимального выброса вредных веществ и реализации мощностного режима осуществляется впрыск непосредственно в камеру сгорания. При этом, для более полного наполнения цилиндров воздухом, используется режим изменения фаз газораспределения (VVT-i) и режим изменения сечения впускного коллектора.

Общий вид двигателя представлен на Фото 1 В режиме холостого хода реализуется экономичный режим работы, при котором соотношение топливо-воздушной смеси составляет 25-1, о чем свидетельствует лампочка на панели приборов «ECONOM». При этом длительность импульса форсунок составляет, примерно, 0.6 мс. При увеличении нагрузки, двигатель переходит в работу в мощностном режиме, при котором соотношение уже составляет 13-1.

Для увеличении времени открытия клапанов, что способствует увеличению объема воздуха, поступающего в цилиндры, включается в работу клапан VVT — i , который открывает масляный канал устройства изменения фаз газораспределения. Сам механизм изменения фаз газораспределения расположен под крышкой, где крепится топливный насос высокого давления (Фото 2).

Когда я занимался этой машиной, в то время, когда двигатель работал нестабильно, умудрился сбить регулировку. Потом довольно-таки долго я пытался отрегулировать узел. Все было безуспешно. И только отрегулировав весь узел так, как это описано, двигатель стал работать стабильно.

Одним из больных вопросов в конструкции этого двигателя является система холодного пуска. В этом двигателе система холодного пуска реализована несколько другим способом, как это было ранее. Как вы помните, в систему холодного пуска, ранее, входил датчик холодного пуска. Управление форсункой холодного пуска (Фото 4) осуществляет блок управления двигателем по сигналу датчика температуры охлаждающей жидкости. Многие проблемы, связанные с холодным пуском двигателя, в большей степени, зависят от исправности форсунки холодного пуска . Этой зимой несколько раз приходилось сталкиваться с неисправностью форсунки . Результат удавалось получить, используя ультрозвуковую чистку.

Интересным элементом конструкции этого двигателя является датчик давления топлива (Фото 6).

Конструктивно, датчик давления топлива представляет собой трехпроводный датчик. По сигналу этого датчика, блок определяет значение высокого давления в топливной рейке. Так как значение давления влияет на количество топлива, поступающего в цилиндры – эта информация является значимой при определении длительности импульса открытия форсунки (Фото 7)

Читайте также:  Ремонт замка зажигания Форд фокус 1

Кроме того, при отсутствии давления в топливной рейке, система блокирует запуск двигателя. У меня предположение, что блокируется управление форсунками, хотя проверить это не удалось. Во время работы с этим двигателем, появилось еще одно предположение. Измеряя значение напряжения на выходе датчика давления топлива , можно, хотя бы и относительно, судить о давлении топлива в топливной рейке. При нормальных условиях, напряжение на выходе датчика составляет 1.8 – 2.0 В.

И теперь о самом интересном. Топливный насос высокого давления (Фото 2) и демонтированный (Фото8).

Что же это такое? С чем его едят? Почему из-за него возникает столько проблем?

Попробуем посмотреть конструкцию и представить, какие его узлы могут создать нам основные проблемы.

Топливный насос высокого давления представляет собой устройство (если так можно его назвать), которое предназначено для того, чтобы создать определенное давление в топливной магистрали. Так как степень сжатия в этом двигателе составляет, примерно, 12 кг/см² и при этом, необходимо создать условия распыления топлива, следовательно, давление топлива в магистрали высокого давления должно превышать это значение в 4 – 5 раз, т.е. составлять 40 – 50 кг/см² (хотя кто-то из ребят в Сибири умудрился померить давление, которое составило около 120 кг/см²). Каким же образом создать такое высокое давление?Для этих целей и создан насос высокого давления. Подача топлива из бака осуществляется обычным погружным насосом. Давление в топливной магистрали низкого давления составляет 4 кг/см². Топливный насос высокого давления приводится в действие кулачком распредвала. А какова же конструкция самого насоса ? ( Фото 9).

После небольших экспериментов насос удалось разобрать, и что же мы там увидели?

1. Корпус топливного насоса высокого давления. В корпус насоса впрессована часть плунжерной пары (мама). Там же находиться сальник (Фото 10) (если его можно так назвать). Конструкция этого сальника чем-то похожа на маслоотражательный колпачок, но более сложной конструкции. Этот сальник одной своей частью (а) снимает масло со штока плунжера (или второй части плунжерной пары (папа)), а второй, внутренний сальник (б) предотвращает прорыв топлива.

1. Шток плунжера или ответная часть (или как-то по-другому) с пружиной, шайбой и опорным цилиндром, который опирается на кулачек распредвала.

2. Выходной штуцер магистрали высокого давления с запорным клапаном.

3. Этот элемент, как я представляю, является демпфером пульсации топлива. Может быть мое мнение и ошибочно, но другого назначения его я не придумал.

4. Шайба. Она изготовлена с высоким классом чистоты. Приводится в действие кулачком распредвала через шток плунжерной пары. За счет движения этой шайбы и создается давление в топливной магистрали и топливной рейке. (С конструкцией плунжеров я не знаком, поэтому все это мои предположения).

5. Электромагнитный клапан. (Его назначение я не придумал. Если его отключить во время работы двигателя – двигатель заглохнет. Если его отключить и попытаться завести машину – она заводится, но двигатель работает не устойчиво, с перебоями.)

Основной неисправностью Топливного насоса высокого давления является выработка на штоке плунжера (Фото11).

Вот в результате этой выработки и происходит прорыв топлива в масляную систему.

Что же будет, если топливо попадет в масло?

Холодный двигатель заводиться нормально, начинает прогреваться. При прогреве работает с незначительными перебоями. Самое интересное происходит, когда двигатель прогревается до температуры 82º С. При достижении температуры 82º С и выше, на холостых оборотах, двигатель работает нормально, не считая небольших сбоев, подтраивания. Если в это время плавно поднять обороты до 2000 обмин или выше, или резко газануть, то обороты опускаются до отметки 1000 обмин и при этом значении начинают скачкообразно изменяться. Чем выше температура, тем выше частота изменения оборотов. Во время скачкообразного изменения оборотов, длительность импульса на инжекторах составляет 0.4 мс, на сервомоторе рециркуляции постоянно присутствует сигнал управления. По диагностике – неисправностей в системе нет.

Устранить неисправность возможно только заменой топливного насоса высокого давления на НОВЫЙ . Но дополнительно, после замены насоса, я считаю, что необходимо произвести промывку масляной системы, замену масла и почистить свечи (если они в нормальном состоянии).

Это описание лишь попытка представить конструкцию двигателя. Не всему в этом описании можно верить, потому что это только мое представление о его принципах построения.

Эксплуатация двигателя D-4
Детонация
Двигатель 7A-FE: вопросы эксплуатации

  • Перепечатка разрешается только с разрешения автора и при условии размещения ссылки на источник

Источник: enc.drom.ru

Непосредственный впрыск

Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Читайте также:  Ремкомплект заднего суппорта Форд фокус 3

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI

Источник: wiki.zr.ru